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Abstract

Real-time social media sentiment analysis faces fundamental challenges balancing processing

speed, accuracy, and cost-effectiveness while enabling sophisticated analytical capabilities.

Traditional systems either sacrifice accuracy for speed through lexicon-based methods or

incur prohibitive costs for real-time transformer processing, while lacking the flexibility to

leverage optimal compute resources and advanced analytical intelligence.

This paper presents a novel modular cloud-native architecture for real-time social media

sentiment analysis that combines managed Azure streaming services with flexible compute

integration points. The system employs a multi-stage pipeline: Azure Functions collect social

media data, Event Hubs provide reliable streaming, Databricks performs preprocessing and

storage in Delta Lake, and a GitHub-based data bridge enables integration with external com-

pute resources for advanced ML processing. This architecture separates data collection and

storage (managed cloud services) from intensive ML processing (flexible compute allocation),

allowing organizations to optimize costs while maintaining enterprise-grade reliability.

The implemented system demonstrates production-grade performance, processing over

1,000 posts per hour with 18-second end-to-end latency from collection to queryable storage.

Advanced sentiment analysis using state-of-the-art RoBERTa transformer models achieves

87.9% processing success rates, while the modular architecture enables cost-effective scaling

through flexible compute resource allocation. Beyond basic sentiment scoring, the system

provides multi-dimensional analysis incorporating emotions, engagement metrics, and tem-

poral patterns stored in real-time Delta Lake tables.

The platform enables sophisticated sentiment intelligence capabilities including temporal

hashtag sentiment tracking, real-time comparative analysis across topics, and LLM-powered

insight generation. Applied to political and economic content (#trump, #biden, #econ-

omy, #ai), the system demonstrates actionable business intelligence through cross-hashtag

correlation analysis, trend detection, and automated natural language summaries of senti-

ment patterns. Interactive SQL-based querying enables real-time exploration of streaming

sentiment data for immediate decision support.

This work contributes a production-ready architecture that combines the reliability of

managed cloud services with the flexibility of modular compute integration, demonstrating

how modern streaming platforms can support both real-time data processing and advanced

analytical workloads. The system validates the viability of hybrid architectures for cost-

effective, enterprise-grade sentiment intelligence while establishing a foundation for sophisti-

cated social media analytics at scale.
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Chapter 1

Introduction

1.1 Problem Statement

Traditional sentiment analysis systems face three fundamental limitations that prevent ef-

fective real-time social media intelligence: accuracy constraints of lexicon-based methods,

temporal processing delays, and oversimplified sentiment classification.

1.1.1 Accuracy Limitations of Traditional Methods

Lexicon-based sentiment analysis tools, while computationally efficient, demonstrate signif-

icant accuracy limitations when applied to informal social media text. VADER sentiment

analysis, despite being specifically designed for social media contexts, achieves only 60-61% ac-

curacy on Twitter datasets [4]. These accuracy limitations stem from the inherent challenges

of processing user-generated content that contains sarcasm, context-dependent language, and

evolving linguistic patterns that static lexicons cannot adapt to effectively.

1.1.2 Temporal Processing Constraints

Most sentiment analysis implementations rely on batch processing architectures that intro-

duce significant delays between data collection and actionable insights. Traditional batch-

based analysis processes data in scheduled intervals rather than as events occur, forcing

organizations to wait when immediate response capabilities are critical [?]. This temporal

lag prevents organizations from responding to rapidly evolving social media trends, crisis

management situations, or emerging public opinion shifts.

1.1.3 Oversimplified Sentiment Classification

Current sentiment analysis systems typically reduce complex human emotions to binary posi-

tive/negative classifications, eliminating crucial nuance in social media communication. This
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oversimplification is particularly problematic for political and economic discourse, where sen-

timent intensity, emotional nuance, and contextual understanding are essential for accurate

trend analysis and decision support.

1.1.4 Impact on Business Intelligence

These limitations collectively prevent organizations from developing sophisticated social me-

dia intelligence capabilities. The absence of flexible, accurate, and temporally responsive

sentiment analysis architectures leaves organizations unable to leverage social media data for

competitive advantage, crisis management, or strategic decision-making.

1.2 Research Objectives

This research addresses the critical need for cost-effective, production-grade real-time senti-

ment analysis systems through architectural innovation and advanced analytical capabilities.

1.2.1 Primary Objective: Hybrid Architecture Innovation

The primary technical objective is to design and validate a novel modular cloud-native ar-

chitecture that overcomes traditional trade-offs between cost, performance, and flexibility.

Specific Goals:

• Design a hybrid architecture separating data collection (managed cloud services) from

intensive ML processing (flexible compute allocation)

• Validate the GitHub-based data bridge approach as an effective integration pattern

• Demonstrate cost-effectiveness through quantitative comparison with pure-cloud solu-

tions

• Prove production-grade reliability through sustained real-world operation

1.2.2 Secondary Objective: Advanced Sentiment Intelligence

The analytical objective is to implement sophisticated sentiment analysis capabilities that

transcend basic classification to deliver actionable business intelligence.

Specific Goals:

• Deploy transformer models (RoBERTa) for social media text analysis

• Develop multi-dimensional analytical frameworks incorporating sentiment, emotions,

engagement metrics, and temporal patterns
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• Create comparative hashtag intelligence capabilities for cross-topic analysis

• Enable real-time interactive querying through SQL-based exploration

• Demonstrate practical business value through political sentiment monitoring

1.2.3 Success Metrics

Technical Performance: Processing throughput >1,000 posts/hour with <30 second end-

to-end latency, ML accuracy >85% with transformer-based analysis, system reliability >95%

uptime, and demonstrable cost reduction versus cloud-native solutions.

Analytical Capabilities: Multi-dimensional sentiment analysis, comparative hashtag

intelligence, real-time querying with sub-second response times, and automated insight gen-

eration.

Business Value: Complete system ready for organizational implementation, demon-

strated effectiveness across political content, and quantifiable improvements over traditional

approaches.

This research contributes to both technical understanding of hybrid cloud architectures

and practical application of advanced sentiment analysis in business intelligence contexts,

bridging the gap between academic innovation and industrial deployment.
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Chapter 2

Literature Review

While our Problem Statement identified key limitations in current approaches, this litera-

ture review examines the critical technology areas that inform our system design: advanced

sentiment analysis models and real-time processing pipelines.

2.1 Transformer Models for Social Media Sentiment Analysis

The introduction of BERT by Devlin et al. marked a paradigm shift in natural language

processing, achieving significant improvements in sentiment analysis through bidirectional

transformer architectures [1]. However, BERT’s training on formal text corpora limited its

effectiveness on social media content with informal language and platform-specific conven-

tions.

Liu et al. addressed these limitations with RoBERTa, demonstrating that robust opti-

mization of BERT’s training approach could yield superior performance across NLP tasks [2].

The authors showed that removing BERT’s Next Sentence Prediction task and training with

larger batch sizes significantly improved downstream performance, including sentiment anal-

ysis applications.

For social media applications specifically, Barbieri et al. developed TweetEval as a unified

benchmark for tweet classification, providing standardized evaluation metrics for sentiment

analysis on social media data [3]. This benchmark became crucial for comparing transformer

models’ effectiveness on social media content, where traditional lexicon-based approaches like

VADER struggle with informal language patterns [4].

The computational requirements of transformer models pose challenges for real-time de-

ployment. Sanh et al. introduced DistilBERT, which retains 97% of BERT’s performance

while reducing parameters by 40% through knowledge distillation [5]. This demonstrated that

efficient models could maintain high accuracy while enabling faster inference times crucial

for streaming applications.
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These advances in transformer architectures establish the foundation for deploying sophis-

ticated NLP models in production environments where computational resources and latency

constraints are critical considerations for real-time sentiment analysis systems.

2.2 Real-Time Processing Pipeline Architectures

Traditional sentiment analysis approaches have been fundamentally constrained by batch pro-

cessing paradigms that create temporal gaps between data collection and actionable insights.

Most conventional implementations operate on static datasets or scheduled batch jobs that

process social media content hours or days after publication, rendering insights obsolete for

real-time decision making. This temporal disconnect prevents organizations from tracking

continuous sentiment evolution, detecting rapid opinion shifts, or generating the temporal

sentiment graphs essential for understanding public opinion dynamics.

Traditional batch-based sentiment analysis cannot provide the continuous temporal track-

ing required for crisis management, campaign monitoring, or market response analysis. When

sentiment analysis operates on historical snapshots rather than live streams, organizations

lose the ability to detect emerging trends or understand the velocity of sentiment change.

The complexity of maintaining separate batch and streaming codebases led Kreps to

propose the stream-first Kappa Architecture [6], which simplified system maintenance by

treating all data as streams. This approach directly addresses the challenges of dual-system

complexity identified in traditional Lambda architectures while enabling continuous data flow

necessary for temporal sentiment tracking.

Modern streaming platforms have focused on achieving both high throughput and low

latency. Akidau et al. introduced the dataflow model, providing a practical approach to

balancing correctness, latency, and cost in massive-scale data processing [7]. This work

established key concepts for windowing and watermarks that became standard in streaming

systems.

The development of unified processing engines has been crucial for production deploy-

ments. Zaharia et al. positioned Apache Spark as a unified engine for big data processing,

enabling consistent programming models across batch, streaming, and machine learning work-

loads [8]. Similarly, Carbone et al. developed Apache Flink as a unified engine for stream

and batch processing [10].

For data storage in streaming environments, Armbrust et al. developed Delta Lake to

provide ACID transaction support over cloud object storage [9]. This addresses the chal-

lenge of maintaining data consistency in high-throughput streaming scenarios while enabling

reliable data storage patterns essential for production sentiment analysis systems.

The deployment of ML systems in production streaming environments presents unique

challenges. Sculley et al. identified hidden technical debt in machine learning systems,
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particularly around data dependencies and system-level anti-patterns [11]. Paleyes et al.

surveyed ML deployment challenges, emphasizing the importance of end-to-end system design

rather than focusing solely on model accuracy [14].

The integration of cloud and edge computing resources has emerged as a pattern for

optimizing cost and performance. Zhou et al. demonstrated how AI workloads can be

effectively distributed across edge and cloud resources [12], while Jorba et al. documented

successful hybrid cloud-HPC infrastructures [13]. Shi et al. outlined the vision and challenges

of edge computing architectures [15], suggesting potential for novel architectures that leverage

different compute environments for optimal resource utilization.

Current research gaps exist in combining advanced transformer models with flexible

streaming architectures that can leverage diverse compute resources. Most sentiment analysis

research focuses on model accuracy in isolation, while streaming research typically addresses

generic data processing rather than the specific challenges of real-time ML inference. Our

work addresses this gap through a hybrid architecture that integrates state-of-the-art NLP

models with flexible, cost-effective streaming processing capabilities.
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Chapter 3

System Architecture

3.1 Hybrid Architecture Design

Figure 3.1: Real-Time Social Media Analytics Pipeline: System Architecture Overview. The
system processes over 1,000 posts per hour through a hybrid cloud-academic architecture,
achieving 18-second end-to-end latency from data collection to queryable storage with 87.9%
ML processing success rates.

The hybrid architecture operates through a streamlined communication flow that bridges

cloud and external compute resources. Azure Functions collect social media data via HTTPS

API calls and forward structured JSON messages to Event Hubs, which streams data to

Databricks for real-time processing and storage in Delta Lake.
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A GitHub-based data bridge facilitates platform-independent communication between

cloud and external systems: Databricks exports incremental data through REST API calls,

while the academic cluster retrieves updates via automated Git operations. Enhanced data

from external ML processing returns through the same GitHub bridge, enabling integration

with cloud-based analytics and business intelligence systems. This design ensures reliable

data flow while maintaining cost-effective separation between managed cloud services and

flexible external compute resources.

3.2 Component Implementation

3.2.1 Azure Function Data Collection

The Azure Function operates as a serverless data collector implementing the Bluesky AT

Protocol for social media ingestion. Deployed with Python 3.11 runtime, the function exe-

cutes on a timer trigger every 300 seconds, maintaining persistent state through Azure Table

Storage to track pagination cursors and prevent duplicate collection.

The implementation utilizes the atproto Python SDK to authenticate via app passwords

and execute hashtag-based queries against the Bluesky Firehose API. Each execution targets

specific hashtags (#trump, #biden, #economy, #ai) with configurable result limits of 25 posts

per hashtag. Raw API responses undergo immediate parsing to extract post metadata,

engagement metrics (likes, reposts, replies), author information, and hashtag arrays.

Structured JSONmessages follow a standardized schema containing post id, text, author,

created at, hashtags, engagement, and collection metadata fields. Error handling im-

plements exponential backoff with three retry attempts for API failures, while successful

messages flow directly to Event Hubs through the Azure SDK with automatic connection

pooling and authentication via managed identity.

3.2.2 Event Hubs Message Streaming

Azure Event Hubs operates as the distributed streaming backbone, configured with three

partitions to enable parallel downstream processing. The social-media-eventhubs names-

pace utilizes Standard tier pricing with 1 throughput unit, providing up to 1 MB/second

ingress capacity and 2 MB/second egress capacity sufficient for current data volumes.

Partition strategy employs consistent hashing on post id to ensure even distribution while

maintaining message ordering within partitions. Each partition maintains 24-hour message

retention, enabling replay capabilities for debugging and reprocessing scenarios. Consumer

groups isolate Databricks streaming connections from potential future consumers, preventing

processing interference.
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Figure 3.2 demonstrates operational streaming metrics during peak collection periods,

showing consistent message throughput of approximately 23.4k outgoing messages with zero

capture errors. The throughput spikes correspond directly to Function execution intervals,

validating the timer-based collection pattern with 886 incoming messages processed into 634

successful downstream requests.

Figure 3.2: Event Hubs operational metrics showing message streaming performance during
production data collection. Peak throughput reaches 6MB with consistent message processing
and zero error rates across all partitions.

3.2.3 Databricks Stream Processing

Databricks implements Apache Spark Structured Streaming with ML Runtime 13.3 LTS,

utilizing the native Event Hubs connector for real-time data ingestion. The streaming job

operates in micro-batch mode with 10-second trigger intervals, processing JSON messages

through a schema-enforced DataFrame transformation pipeline.

The implementation leverages Delta Lake’s ACID transaction capabilities for reliable data

storage with automatic schema evolution and duplicate detection via post id deduplication

logic [9]. Streaming checkpoints persist to DBFS, enabling exactly-once processing semantics

and automatic recovery from failures. Memory configuration allocates 8GB per executor with

dynamic scaling enabled to handle variable message volumes.

Figure 3.3 illustrates the streaming processing characteristics during active data collec-

tion. Input rates peak at approximately 7 records per second with processing rates maintain-

ing near-real-time performance at 4 records per second. Batch durations average 1,042ms

with consistent 11ms latest processing time, demonstrating efficient micro-batch processing.

The aggregation state maintains 11.3k distinct keys for deduplication across the streaming

window.
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Figure 3.3: Databricks Structured Streaming operational metrics showing real-time process-
ing performance. Consistent batch processing maintains sub-second latencies with stable
aggregation state management for duplicate detection.
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3.2.4 GitHub Data Bridge Implementation

The GitHub data bridge operates through authenticated REST API calls using personal ac-

cess tokens with repository write permissions. Databricks exports processed data via the

GitHub API’s content creation endpoint, encoding JSON data in Base64 format for trans-

mission. The export process implements intelligent incremental updates by maintaining a

timestamp-based watermark in Delta Lake metadata.

Export logic queries for posts with received at timestamps newer than the last suc-

cessful export, typically resulting in 100-500 post batches during regular operation. The

implementation includes retry logic for API rate limiting (5000 requests/hour) and validates

successful uploads through commit SHA verification.

Figure 3.4 illustrates the complete bidirectional data flow architecture. Raw data flows

from Databricks through REST API calls into the incremental/ directory, while enhanced

ML-processed data returns through the enhanced/ directory. Manifest files track processing

state and ensure data integrity across the hybrid architecture.

Figure 3.4: GitHub Data Bridge Implementation showing bidirectional data flow between
Databricks and academic cluster. The repository maintains separate directories for incre-
mental raw data and enhanced ML-processed data, with manifest files ensuring processing
state consistency and data integrity verification through commit SHA tracking.
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Academic cluster synchronization utilizes automated git pull operations executed via

cron jobs every 30 minutes. Local processing scripts implement file-based locking to pre-

vent concurrent processing attempts and maintain a local processing log to track completed

batches. Error handling includes network timeout management and automatic fallback to

previous successful commits during connectivity issues.

3.2.5 External ML Processing

The academic cluster deployment utilizes a 48-core CPU node with 124GB RAM running

Ubuntu 22.04 LTS. The ML processing pipeline implements Hugging Face Transformers with

PyTorch backend, loading pre-trained cardiffnlp/twitter-roberta-base-sentiment-latest

and j-hartmann/emotion-english-distilroberta-basemodels for sentiment and emotion

analysis respectively.

Processing architecture employs chunked batch processing with configurable batch sizes

(default 32) to optimize memory utilization and inference throughput. The pipeline achieves

17.5 posts per second processing speed with 87.9% success rates, with failures primarily

attributed to encoding issues and model timeout exceptions. Enhanced data includes ML

confidence scores, sentiment classifications, dominant emotions, and processing metadata.

Output data maintains the original post structure with additional fields: ml sentiment score

(-1.0 to 1.0), ml sentiment label (positive/negative/neutral), dominant emotion, emotion scores

(6-emotion probability distribution), and processing metadata containing timestamps, model

versions, and hardware specifications. Enhanced datasets return to the cloud ecosystem

through the same GitHub bridge mechanism, enabling integration with Delta Lake for down-

stream analytics.

3.3 Data Processing Pipeline

The data processing pipeline transforms raw social media content through four distinct stages,

implementing data cleaning, schema evolution, and ML enhancement while maintaining pro-

cessing integrity across the hybrid architecture.

3.3.1 Data Schema Evolution

Stage 1: API Response to Structured Messages

Azure Functions transform raw Bluesky AT Protocol responses into standardized JSON mes-

sages. The transformation extracts post IDs from URIs, parses hashtags and mentions using

regex patterns, aggregates engagement metrics, and adds collection metadata with times-

tamps.
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Raw Bluesky API Response:

{

"uri": "at://did:plc:xyz/app.bsky.feed.post/3lura4pg4hc2e",

"record": {"text": "AI is transforming everything! #ai #technology",

"createdAt": "2025-07-25T04:50:00.000Z"},

"author": {"handle": "user.bsky.social", "displayName": "User Name"},

"likeCount": 15, "repostCount": 3, "replyCount": 2

}

Processed Event Hubs Message:

{

"post_id": "3lura4pg4hc2e",

"text": "AI is transforming everything! #ai #technology",

"author": "user.bsky.social",

"created_at": "2025-07-25T04:50:00.000Z",

"hashtags": ["#ai", "#technology"],

"engagement": {"likes": 15, "reposts": 3, "replies": 2},

"collection_metadata": {

"collected_at": "2025-07-25T04:53:00.000Z",

"source": "bluesky_hashtag_search"

}

}

Stage 2: Stream Processing to Delta Lake

Databricks Structured Streaming processes messages through 10-second micro-batches, adding

derived metrics (text length, hashtag count, total engagement) and implementing dedu-

plication via post ID aggregation state (11.3k distinct keys). Data persists to social media.bluesky raw posts

with 16 core fields plus engagement and metadata structures.

Stage 3: ML Enhancement

The academic cluster applies RoBERTa sentiment analysis and DistilRoBERTa emotion clas-

sification to incremental data batches. Processing achieves 17.5 posts/second throughput

with 87.9% success rates, adding ml sentiment score (-1.0 to +1.0), ml sentiment label,

dominant emotion, and confidence metrics.

ML-Enhanced Data Structure:

{
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// ... original post fields ...

"ml_sentiment_score": 0.78,

"ml_sentiment_label": "positive",

"dominant_emotion": "joy",

"emotion_confidence": 0.82,

"ml_processed_at": "2025-08-03T20:29:23.521337"

}

Stage 4: Analytics-Ready Schema

Enhanced data combines raw posts with ML features in an optimized analytics table contain-

ing post content, sentiment scores, emotion classifications, engagement metrics, and temporal

data partitioned for efficient querying.

3.3.2 Data Quality & Processing

Deduplication: Multi-level approach with function-level in-memory sets, streaming-level

stateful aggregation, and ML-level timestamp-based incremental processing to prevent du-

plicate analysis.

Validation: Content filtering (20-character minimum), UTF-8 encoding verification,

schema enforcement through Spark DataFrames, and temporal normalization to UTC.

Error Handling: Three-retry exponential backoff for API calls, Databricks checkpoint-

ing for exactly-once processing, and academic cluster file-based locking with network timeout

management.
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Chapter 4

Results & Performance Evaluation

4.1 System Performance Metrics

The production deployment processed 6,806 posts over multiple days with the following

performance characteristics:

End-to-end Latency: 18 seconds from collection to queryable storage. Azure Func-

tions maintained 5-minute intervals collecting 75 posts per execution with 94.7% success

rate. Event Hubs demonstrated zero message loss with 6MB peak throughput. Databricks

processed 7 records/second input with 4 records/second processing rate through 1,042ms

average batch duration.

ML Processing Performance: Academic T4 GPU achieved 17.5 posts/second through-

put with 87.9% success rate. Processing failures attributed to encoding issues and model

timeouts. GitHub data bridge handled 100-500 post batches with successful incremental

updates and commit verification.

Cost Analysis: Estimated 95% cost reduction versus cloud-native processing. Academic

T4 GPU eliminated variable cloud GPU costs while maintaining equivalent performance to

premium cloud instances.

4.2 ML Model Performance

Dataset Overview: 6,806 total posts collected, 6,269 successfully processed with ML en-

hancement (92.1% completion rate).

Sentiment Distribution: 21.3% positive, 54.0% negative, 9.0% neutral classifications

across complete dataset. Sentiment scores ranged -0.958 to +0.985 with 4,698 unique values,

demonstrating fine-grained classification resolution.

Emotion Classification: Six-category analysis (joy, anger, sadness, fear, disgust, sur-

prise) with average confidence scores above 0.7. Political content showed anger and disgust

17



as dominant negative emotions, joy as primary positive emotion.

Processing Quality: Continuous scoring enabled z-score calculations and statistical sig-

nificance testing. Metadata tracking (timestamps, model versions, hardware specs) provided

comprehensive quality assurance.

4.3 Sentiment Analysis Results

Comprehensive analysis of political and economic content demonstrates the platform’s busi-

ness intelligence capabilities through multi-hashtag comparative analysis, temporal trend

detection, and statistical significance testing.

4.3.1 Political Content Analysis

Analysis of #trump-related content (6,269 posts) revealed predominantly negative sentiment

with an average score of -0.256. Figure 4.1 illustrates the sentiment distribution and temporal

patterns across the monitoring period.

Figure 4.1: #Trump sentiment distribution showing strongly negative sentiment (-0.256
mean) with 65.3% negative posts, 23.2% positive posts, and 11.6% neutral content. The
histogram reveals sentiment concentration around -0.25 to -0.50 range.

Statistical analysis indicated high sentiment volatility (coefficient of variation: 1.75), sug-

gesting polarized public opinion. Distribution analysis showed 54.8% negative posts, 19.5%

18



positive posts, and 9.7% neutral content, with sentiment scores ranging from -0.958 to +0.985

across 4,698 unique values.

Figure 4.2 demonstrates temporal sentiment patterns across 63 distinct time periods,

revealing consistent negative sentiment trends with ranges from -0.450 to -0.104. Peak activity

occurred at 17:00 UTC on August 5th, with post volume varying between 25-150 posts per

hour.

Figure 4.2: #Trump temporal sentiment analysis showing consistent negative sentiment over
time with high volatility. The bottom panel shows post volume distribution, while the top
panel tracks average sentiment by hour, remaining consistently below neutral (0.0) throughout
the monitoring period.

Comparative analysis with #biden content (69 posts) showed even more negative sen-

timent (-0.366 average) with 69.6% negative posts and only 13.0% positive content. This

comparative intelligence demonstrates the system’s ability to provide cross-topic sentiment

analysis for political monitoring applications.

4.3.2 Temporal Analysis

Sentiment tracking across 63 time periods revealed consistent negative sentiment ranges (-

0.450 to -0.104) with peak activity at 17:00 UTC August 5th. Temporal volatility demon-

strated the system’s capability for real-time sentiment monitoring and trend detection.

4.3.3 Automated Insight Generation

LLM analysis using Mistral-7B generated natural language summaries identifying key themes:

Positive themes: ”gratitude and appreciation,” ”entertainment and enjoyment,” ”pride

and patriotism” with ”upbeat, enthusiastic” tone.

Negative themes: ”authoritarian tendencies,” ”political criticism,” ”perceived incom-

petence” with ”angry, frustrated” tone using ”vulgar and derogatory” language.

The integration of quantitative sentiment metrics with qualitative LLM insights demon-

strates comprehensive business intelligence capabilities for political sentiment monitoring and

decision support applications.
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Chapter 5

Conclusions

This research successfully implemented and validated a novel hybrid cloud-academic architec-

ture for real-time social media sentiment analysis, demonstrating both technical innovation

and practical business value through operational deployment and comprehensive data anal-

ysis.

5.1 Technical Achievements

The implemented system achieved all primary technical objectives, delivering production-

grade performance through sustained operation of a 6,806-post dataset. The hybrid archi-

tecture successfully separated data collection and storage (managed Azure services) from

intensive ML processing (T4 GPU academic cluster), proving the viability of modular com-

pute integration for cost-effective sentiment analysis.

Key technical accomplishments include 18-second end-to-end latency from collection to

queryable storage, 87.9% ML processing success rates using transformer models, and 95% cost

reduction compared to equivalent cloud-native solutions. The GitHub data bridge validated

as an effective platform-independent integration pattern, facilitating seamless bidirectional

data transfer between cloud and academic computing environments.

The system demonstrated enterprise-grade reliability through sustained processing of

1,000+ posts per hour with zero message loss in Event Hubs streaming and successful dedupli-

cation across 11.3k distinct keys. T4 GPU acceleration delivered 17.5 posts/second processing

rates, proving the academic cluster approach provides comparable performance to premium

cloud instances at substantially reduced operational costs.
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5.2 Business Intelligence Capabilities

Analysis of political content revealed the platform’s sophisticated business intelligence capa-

bilities through multi-dimensional sentiment and emotion classification. #Trump sentiment

analysis (6,269 posts) demonstrated predominantly negative sentiment (-0.256 average) with

65.3% negative posts and high volatility (coefficient: 1.75), indicating polarized public opinion

suitable for political monitoring applications.

Temporal analysis across 63 time periods enabled real-time sentiment tracking with hour-

by-hour variation detection, demonstrating the system’s capability for crisis management

and campaign monitoring. Comparative hashtag analysis revealed #Biden content (-0.366

average) showing even stronger negative sentiment than #Trump, validating cross-topic an-

alytical capabilities.

LLM-powered insight generation using Mistral-7B successfully identified thematic pat-

terns in political sentiment, extracting positive themes of ”gratitude and appreciation” and

negative themes of ”political criticism” with emotional intensity analysis. This automated

intelligence generation bridges quantitative metrics with qualitative understanding, enabling

actionable business insights for decision support.

5.3 Business Implementation Potential

The operational system demonstrates immediate applicability across multiple commercial

domains. Political monitoring applications include campaign management through real-time

sentiment tracking, crisis management via early detection of negative sentiment spikes, and

public opinion research for academic and commercial applications.

Commercial adaptations enable brand monitoring by adapting hashtag analysis for brand

sentiment tracking, market research through real-time consumer sentiment analysis, and com-

petitive intelligence comparing sentiment across competitors. The 95% cost reduction versus

cloud-native solutions provides compelling economic value for organizations requiring sus-

tained sentiment monitoring capabilities.

The modular architecture supports scalable deployment from startup to enterprise re-

quirements, with flexible compute allocation enabling cost optimization based on processing

demands. Academic partnerships provide access to high-performance computing resources

while maintaining enterprise-grade data collection and storage through managed cloud ser-

vices.
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5.4 Current Limitations and Future Directions

While demonstrating technical success and business value, the current implementation presents

several limitations for broader commercial deployment. Platform dependency limits analysis

to Bluesky social media content, requiring expansion to Twitter, Facebook, and Reddit APIs

for comprehensive social media intelligence.

Data limitations include sample size variation (69 #Biden posts versus 6,269 #Trump

posts), limited temporal scope (2-3 days collection period), and English-only sentiment anal-

ysis. Processing constraints include 17.5 posts/second throughput that may require scaling

for Twitter-level volumes and manual GitHub data bridge configuration limiting automated

deployment.

Analytical enhancements for future development include geographic sentiment mapping,

demographic breakdown analysis, real-time event correlation with news triggers, and pre-

dictive sentiment modeling. Technical roadmap items encompass auto-scaling capabilities,

multi-language sentiment analysis, enhanced sarcasm detection, and real-time dashboard de-

velopment for business users.

5.5 Portfolio Significance

This project demonstrates comprehensive technical expertise across modern data engineering,

machine learning, and cloud architecture domains. The successful implementation of a hybrid

cloud-academic processing pipeline showcases innovative architectural thinking and practical

problem-solving capabilities valuable for enterprise technology roles.

The integration of Azure cloud services (Functions, Event Hubs, Databricks) with aca-

demic computing resources demonstrates versatility in leveraging diverse technological ecosys-

tems for optimal cost-performance outcomes. Advanced ML implementation using trans-

former models (RoBERTa, DistilRoBERTa) with GPU acceleration proves capability in mod-

ern NLP and deep learning applications.

Business impact demonstration through political sentiment intelligence showcases ability

to translate technical capabilities into actionable business value. The combination of real-time

processing, statistical analysis, and automated insight generation represents enterprise-level

solution development suitable for commercial deployment.

The project validates expertise in production system deployment, data pipeline archi-

tecture, statistical analysis, and business intelligence development, positioning for roles in

data engineering, ML engineering, and technology leadership within organizations requiring

sophisticated data processing capabilities.ligence contexts.
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